Coding with Scratch: Learning Loops: Repetition Loops (Drawing Regular Polygons)

National Curriculum

Use sequence, selection and repetition in programs; work with variables and various forms of input and output.
Aim
To use a loop to repeat a sequence of instructions for a specific task.

Lesson Duration

This lesson will last approximately 60 minutes.

Key Vocabulary

Loop, regular polygon, repeat, repetition, customise, nested.

Preparation

What Am I? Activity Sheet - one per pair or group.
Differentiated Drawing Regular Polygons Activity Sheet - one per child as required.
Please access Lesson 3 (Example Pattern) within the

Prior Learning: Children will already be familiar with the idea of loops in coding and should be able to explain the advantages of using them. In the previous lesson, children looked in more detail at using a count-controlled loop to repeat actions a specific number of times. They should also be able to customise repeat blocks in order to make their code more efficient.

Learning Sequence
Remember It: Use the Lesson Presentation to remind children what an algorithm is. Ask children to think about
examples of algorithms in everyday life. Use the on-screen examples to help children recognise common types of
algorithms used in everyday life. Compare algorithms with and without loops and remind children about how loops

provide a quicker and easier way to write sets of repeated instructions. | What Is a Regular Polygon?: Ask children to think about what a regular polygon is before looking at the examples |
| :--- |
| in the Lesson Presentation. Ensure that children understand the definition of a regular polygon and that they can |
| identify regular 2D polygons. In pairs or small groups, children can complete the What Am I? Activity Sheet to |
| ensure that they can identify a range of regular polygons and describe the number of sides and angles. |

	Drawing Regular Polygons: Use the Lesson Presentation to introduce children to their coding task. The task challenges them to write algorithms in Scratch to draw a range of regular polygons. Children can work individually or in pairs using the appropriate differentiated Drawing Regular Polygons Activity Sheet. Encourage children to test their algorithms and debug the instructions if they find an error. Children draw simple Children draw simple 2D Children draw a wider 2D shapes using the shapes, organising the range of 2D shapes, suggested blocks into calculating the angles algorithms. in each shape and customising the blocks as required.	
oon	Perfect Patterns: Use the Lesson Presentation to show children how their learning about loops and regular polygons can be utilised to create complex patterns. Look in more depth at the code provided on the slide for a spiral pattern based on an octagon. Ensure that children understand that two loops are used within the algorithm and introduce the term nested to show how one loop sits inside another. Can the children predict what this algorithm might create? Encourage children to reflect on the importance of using loops within code. Why is it better to use loops to carry out long or complex tasks? After exploring the algorithm, use the \qquad Scratch file to see the code in action. Click on the Green flag to run. You can run the code and show children the pattern that is created. Children may like to explore creating their own patterns in Scratch based on other regular polygons. They can explore changing the pen colour to create shapes in a different colour each time. Encourage children to try out their ideas and debug their code to remove any errors.	\square

Exploreit

Drawit: Children can work independently to practise using loops to create firework night pictures in Scratch. Provide them with this for support.
Animateit: Provide children with a copy of the \qquad They can use the worksheet for support as they explore using loops to create and animate the letters of their name in Scratch.

Assessment Notes:

Disclaimers

External Links:

This resource contains links to external websites and/or external apps. Please be aware that the inclusion of any link in this resource should not be taken as an endorsement of any kind by Twinkl of the linked website and/or app, or any association with its operators. You should also be aware that we have no control over the availability of the linked pages and/or apps. If the link is not working, please let us know by contacting TwinklCares and we will try to fix it although we can assume no responsibility if this is the case. We are not responsible for the content of external sites and/or external apps.

Scratch Safety:

Showing or creating the flashing sprite effect could be problematic for children with conditions such as epilepsy. Discretion is advised.

Computing

Coding with Scratch: Learning Loops

Repetition Loops (Drawing Regular Polygons)

Question Marks

This is Quizby.

He is a question mark who loves to ask questions.

When you see a question mark icon like this in the Lesson Presentation, it can be clicked on to reveal one of Quizby's questions.

The questions that appear next to these question marks will help you to think about the key learning throughout the lesson.

Aim

- To use a loop to repeat a sequence of instructions for a specific task.

Success Criteria

- I can identify where in an algorithm repetition will be useful.
- I can customise a repeat block for a specific purpose.
- I can write algorithms to draw regular polygons.
- I can use loops for repetition in order to improve code.

Remember It

Fatima, Lucy and Samuel are talking about algorithms.
They all have different ideas about what an algorithm is. Have a look at what each child says and then decide who you think might be right.

I think an algorithm is a type of computer language.

I think an algorithm is a type of music.

I think an algorithm is a set of instructions for solving a problem.

Remember It

Fatima is correct. An algorithm is a set of instructions or rules for solving a problem or completing a task.

A recipe is an example of an algorithm. It is a set of steps to produce something nice to eat.

Directions to travel from one place to another is an algorithm. The instructions need to be in the correct order.

Travel 100 metres along Twinkl Road. Turn right onto Twinkl Lane.

Go straight over the munu-roundabout Arrive at your destination.

A set of instructions for a craft activity is an algorithm. If you follow the algorithm correctly you will build a model.

Have you ever tried origami? The set of instructions to fold the paper in different ways is also an algorithm.

Remember It

Talk About It:

Did you notice that the instructions are repeated three times? Is there a better way to write this code?

Remember It

A loop can be used to repeat a set of instructions over and over again. It is a quicker and easier way to write code.
Click on the algorithm below to see how it changes when a loop is used instead.

What Is a Regular Polygon?

In this lesson, you will explore repeat loops further through drawing some regular polygons in Scratch.

Talk About It:

Look at these examples of regular polygons. What do you notice about them? How are they the same and how are they different? Can you explain what you think a regular polygon is?

What Is a Regular Polygon?

A polygon is a 2D closed shape with straight sides.
A regular polygon is a polygon in which all the sides are equal in length and all the angles are equal in size.

Is this a regular polygon?

What Is a Regular Polygon?

What Am I?

 pelugen have?

Number of sides Nurber of ungles

Number of sides Nurnier of ungles

Number of zides Namber of corules \square

Drawing a Square in Scratch

Now, let's try drawing some regular polygons in Scratch.
We will start with a square.

Let's start the algorithm using

Square begins with an 's'. Chan 's' using the drop down menu. I y pressed block. the computer will know to draw a square.

Drawing a Square in Scratch

 Examsigaritlom iso ttheabaittwinl leftr-hualindesoonsèt fof luthersstheeinstructions.
 in the Block Palette.

Drawing a Square in Scratch

Look carefully at the square. It has 4 sides and 4 angles.

Here is the algorithm to draw the square in Scratch. Can you spot the code for each side and each angle in the square?
How many times are the they repeated?

Drawing a Square in Scratch

There are lots of blocks used in this algorithm.
This makes the code very long.
Click on the algorithm each time to see how the code can be improved by using a loop.

x Why has the number in the repeat block been changed to a 4 ?

Drawing a Square in Scratch

The square should look like this.

Look at this algorithm. It will be important in your work today. What do you think this algorithm will instruct the computer to do?

This algorithm can be used to erase all the pen marks and reset Sprite back to the centre of the Stage ready to draw again.

Drawing a Square in Scratch

Don't forget to give your code a suitable file name and save it if you want to keep it. What would be a good name for the algorithm to draw a square?

If you do not have an account, you can choose to Save to your computer.
This will download a copy to your computer.

If you have an account, you can choose Save now and a copy will be saved to your Scratch account.

Drawing Regular Polygons

Now you know how to use a repetitic to move onto some other regular polit
What other shapes could you draw? polygon all the sides are the same ler
 Polygons Activity Sheet to write algorithms for each shape in Scratch.
Remember to test your algorithms and debug them if you find any errors.

Drawing Regular Polygons

Steutch, arr yeu wrobict wher 20 stapt ecth one will madke?

 have learnt from the aggortums abava to hesp jeu to wilta a now algonthm to druw at ox.tnquit
Top Tip: Drnwing sides of 00 stess might make the octagen alse pecorr off the poge 1) tiing a amoller nuenber of ste ge tion each yide

Perfect Patterns

Now you are such a whizz with loops, you can create some pretty amazing patterns using regular polygons.

Look carefully at this algorithm. Can you see that there are two loops in this algorithm? One loop is nested inside another one.

Perfect Patterns

Did you work it out?
The nested loop is instructing the computer to draw an octagon by repeating the same steps eight times.

Perfect Patterns

The second loop is instructing the computer to repeat the shape and make a turn. The white area has been changed to 36 so the computer will carry out these instructions 36 times.

- This white area allows us to customise the repeat block. We can edit the number to change how many times something is repeated.
X Why is it better to use loops to carry out long or complex tasks?

Perfect Patterns

When you are ready to see what the pattern looks like, click on the algorithm. What a perfect pattern!

Why don't you have a go at using loops with different shapes to create some patterns of your own? Canh you thininieg a way to change the pen colour to create a rainbow effect?
Don't forget to debug the algorithms if you spot any errors.

Aim

- To use a loop to repeat a sequence of instructions for a specific task.

Success Criteria

- I can identify where in an algorithm repetition will be useful.
- I can customise a repeat block for a specific purpose.
- I can write algorithms to draw regular polygons.
- I can use loops for repetition in order to improve code.

Coding with Scratch

Drawing Regular Polygons

To use a loop to repeat a sequence of instructions for a specific task.

Create the following algorithms in Scratch to draw regular polygons. Start each algorithm with the when key pressed block, changing the drop-down menu to be the first letter of the shape name. Remember to save your work.

Before you write the algorithms in

shape each one will make?

I think this algorithm will draw a \qquad

I think this algorithm will draw a

I think this algorithm will draw a \qquad

Challenge: An octagon has 8 sides. Each angle in an octagon is 45°. Use what you have learnt from the algorithms above to help you to write a new algorithm to draw an octagon.

Top Tip: Drawing sides of 100 steps might make the octagon disappear off the page. Try using a smaller number of steps for each side.

Drawing Regular Polygons Answers

To use a loop to repeat a sequence of instructions for a specific task.

These are possible answers but children's code may vary. The angle and number of repeats must be as shown.

I think this algorithm will draw a hexagon

I think this algorithm will draw a octagon

Drawing Regular Polygons

To use a loop to repeat a sequence of instructions for a specific task.

Top Tips:

Before you begin each algorithm, remember to clear your screen. Use this code.

Remember to save your work.

1. Using the blocks below, write an algorithm to draw a triangle.

2. Using the blocks below, write an algorithm to draw a pentagon.

3. Using the blocks below, write an algorithm to draw a hexagon with 6 sides. How many times will the instructions need to be repeated?

Challenge: Can you write an algorithm to draw an octagon. The angles in an octagon are 45°.

Debug: What will you need to change if the shape is too large for the Stage?

Drawing Regular Polygons Answers

To use a loop to repeat a sequence of instructions for a specific task.

These are possible answers but children's code may vary. The angle and number of repeats must be as shown.

1. Regular triangle

2. Regular pentagon

3. Regular hexagon

4. Challenge:

Regular octagon

Drawing Regular Polygons

To use a loop to repeat a sequence of instructions for a specific task.

Top Tips:

Before you begin each algorithm, remember to clear your screen. Use this code. Remember to save your work.

Write algorithms to draw the following regular polygons. Start each algorithm with the when key pressed block and use the letter that starts the shape name.

Shape	Number of sides	Angle of turn
triangle	3	$360^{\circ} \div 3=120^{\circ}$
pentagon	5	

Challenge: Find out how many sides a dodecagon has. Can you write an algorithm to draw this shape?

Top Tip: As you have already used the letter d for decagon, you will have to choose another letter for dodecagon.

Drawing Regular Polygons Answers

To use a loop to repeat a sequence of instructions for a specific task.

Shape	Number of sides	Angle of turn
triangle	3	$360^{\circ} \div 3=120^{\circ}$
pentagon	5	$360^{\circ} \div 5=72^{\circ}$
hexagon	6	$360^{\circ} \div 6=60^{\circ}$
octagon	10	$360^{\circ} \div 8=45^{\circ}$
decagon		
dodecagon		

Drawing Regular Polygons

To use a loop to repeat a sequence of instructions for a specific task.

Create the following algorithms in Scratch to draw regular polygons. Start each algorithm with the when key pressed block, changing the drop-down menu to be the first letter of the shape name. Remember to save your work.

Before you write the algorithms in
shape each one will make?

I think this algorithm will draw a \qquad

I think this algorithm will draw a \qquad

I think this algorithm will draw a \qquad

Challenge: An octagon has 8 sides. Each angle in an octagon is 45°. Use what you have learnt from the algorithms above to help you to write a new algorithm to draw an octagon.

Top Tip: Drawing sides of 100 steps might make the octagon disappear off the page. Try using a smaller number of steps for each side.

Drawing Regular Polygons Answers

To use a loop to repeat a sequence of instructions for a specific task.

These are possible answers but children's code may vary. The angle and number of repeats must be as shown.

I think this algorithm will draw a hexagon

I think this algorithm will draw a octagon

Drawing Regular Polygons

To use a loop to repeat a sequence of instructions for a specific task.

Top Tips:

Before you begin each algorithm, remember to clear your screen. Use this code.

Remember to save your work.

point in direction
90

1. Using the blocks below, write an algorithm to draw a triangle.

2. Using the blocks below, write an algorithm to draw a pentagon.

3. Using the blocks below, write an algorithm to draw a hexagon with 6 sides. How many times will the instructions need to be repeated?

Challenge: Can you write an algorithm to draw an octagon. The angles in an octagon are 45°.

Debug: What will you need to change if the shape is too large for the Stage?

Drawing Regular Polygons Answers

To use a loop to repeat a sequence of instructions for a specific task.

These are possible answers but children's code may vary. The angle and number of repeats must be as shown.

1. Regular triangle

2. Regular pentagon

3. Regular hexagon

4. Challenge:

Regular octagon

Drawing Regular Polygons

To use a loop to repeat a sequence of instructions for a specific task.

Top Tips:

Before you begin each algorithm, remember to clear your screen. Use this code. Remember to save your work.

Write algorithms to draw the following regular polygons. Start
 each algorithm with the when key pressed block and use the letter that starts the shape name.

Shape	Number of sides	Angle of turn
triangle	3	$360^{\circ} \div 3=120^{\circ}$
pentagon	5	

Challenge: Find out how many sides a dodecagon has. Can you write an algorithm to draw this shape?
Top Tip: As you have already used the letter d for decagon, you will have to choose another letter for dodecagon.

Drawing Regular Polygons Answers

To use a loop to repeat a sequence of instructions for a specific task.

Shape	Number of sides	Angle of turn
triangle	3	$360^{\circ} \div 3=120^{\circ}$
pentagon	5	$360^{\circ} \div 5=72^{\circ}$
hexagon	6	$360^{\circ} \div 6=60^{\circ}$
octagon	10	$360^{\circ} \div 8=45^{\circ}$
decagon	12	$360^{\circ} \div 10=36^{\circ}$
dodecagon		

What Am I?

To use a loop to repeat a sequence of instructions for a specific task.

Can you identify these regular polygons? Write the correct name inside each shape. Use the word bank to help you. How many sides and how many angles does each regular polygon have?

Number of sides \square
Number of angles \square

Number of sides

Number of angles \square

What Am I? Answers

To use a loop to repeat a sequence of instructions for a specific task.

Can you identify these regular polygons? Write the correct name inside each shape. Use the word bank to help you. How many sides and how many angles does each regular polygon have?

Number of sides 3
Number of angles 3

Number of sides 6
Number of angles 6

Number of sides 4
Number of angles 4

Number of sides 8
Number of angles 8

Number of sides 5
Number of angles 5

Number of sides 10
Number of angles 10

Coding with Scratch: Learning Loops | Repetition Loops (Drawing Regular Polygons)

To use a loop to repeat a sequence of instructions for a specific task.		
I can identify where in an algorithm repetition will be useful.		
I can customise a repeat block for a specific purpose.		
I can write algorithms to draw regular polygons.		
I can use loops for repetition in order to improve code.		

Coding with Scratch: Learning Loops | Repetition Loops (Drawing Regular Polygons)

To use a loop to repeat a sequence of instructions for a specific task.		
I can identify where in an algorithm repetition will be useful.		
I can customise a repeat block for a specific purpose.		
I can write algorithms to draw regular polygons.		
I can use loops for repetition in order to improve code.		

Coding with Scratch: Learning Loops | Repetition Loops (Drawing Regular Polygons)

To use a loop to repeat a sequence of instructions for a specific task.		
I can identify where in an algorithm repetition will be useful.		
I can customise a repeat block for a specific purpose.		
I can write algorithms to draw regular polygons.		
I can use loops for repetition in order to improve code.		

(Drawing Regular Polygons)

To use a loop to repeat a sequence of instructions for a specific task.		
I can identify where in an algorithm repetition will be useful.		
I can customise a repeat block for a specific purpose.		
I can write algorithms to draw regular polygons.		
I can use loops for repetition in order to improve code.		

Coding with Scratch: Learning Loops | Repetition Loops (Drawing Regular Polygons)

To use a loop to repeat a sequence of instructions for a specific task.		
I can identify where in an algorithm repetition will be useful.		
I can customise a repeat block for a specific purpose.		
I can write algorithms to draw regular polygons.		
I can use loops for repetition in order to improve code.		

Coding with Scratch: Learning Loops | Repetition Loops
(Drawing Regular Polygons)

To use a loop to repeat a sequence of instructions for a specific task.		
I can identify where in an algorithm repetition will be useful.		
I can customise a repeat block for a specific purpose.		
I can write algorithms to draw regular polygons.		
I can use loops for repetition in order to improve code.		

Coding with Scratch: Learning Loops | Repetition Loops (Drawing Regular Polygons)

To use a loop to repeat a sequence of instructions for a specific task.		
I can identify where in an algorithm repetition will be useful.		
I can customise a repeat block for a specific purpose.		
I can write algorithms to draw regular polygons.		
I can use loops for repetition in order to improve code.		

Coding with Scratch: Learning Loops | Repetition Loops (Drawing Regular Polygons)

To use a loop to repeat a sequence of instructions for a specific task.		
I can identify where in an algorithm repetition will be useful.		
I can customise a repeat block for a specific purpose.		
I can write algorithms to draw regular polygons.		
I can use loops for repetition in order to improve code.		

